The role of atomic chlorine in glacial-interglacial changes in the carbon-13 content of atmospheric methane

James Levine, Eric Wolff, Anna Jones, and Louise Sime
British Antarctic Survey, Cambridge, United Kingdom (javi@bas.ac.uk)

Methane (CH\textsubscript{4}) is an important atmospheric constituent on account of its potency as a greenhouse gas and its influence on the tropospheric oxidising capacity. The ice-core record of δ13CH\textsubscript{4} has largely been used to constrain past changes in CH\textsubscript{4} sources. However, CH\textsubscript{4} sinks also affect δ13CH\textsubscript{4}, and changes in the strength of a relatively minor one, oxidation by atomic chlorine in the marine boundary layer (Cl\textsubscript{MBL}), have been invoked to explain spatial and inter-annual variations in δ13CH\textsubscript{4}. Here, we explore for the first time the contribution that changes in the strength of the Cl\textsubscript{MBL} sink could have made to changes in δ13CH\textsubscript{4} on glacial-interglacial timescales.

Combining wind and temperature data from a variety of general circulation models with a simple formulation for the concentration of Cl\textsubscript{MBL}, we find that circulation-driven changes in the strength of this sink, alone, could have been responsible for changes in δ13CH\textsubscript{4} of the order of 10% of the glacial-interglacial difference observed. In light of the many other factors affecting Cl\textsubscript{MBL} that we have not explored, we highlight the need to quantify past changes in the strength of this sink, and consider these when interpreting glacial-interglacial changes in δ13CH\textsubscript{4}.