Analyzing early exo-Earths with a coupled atmosphere biogeochemical model

Stefanie Gebauer (1), John Lee Grenfell (1), Joachim Stock (2), Ralph Lehmann (3), Mareike Godolt (4), Philip von Paris (5,6), Heike Rauer (1,4)

(1) Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
(stefanie.gebauer@dlr.de), (2) Instituto de Astrofísica de Andalucía - CSIC, Granada, Spain, (3) Alfred-Wegener Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Potsdam, Germany, (4) Zentrum für Astronomie und Astrophysik (ZAA), Technische Universitaet Berlin, Berlin, Germany, (5) Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac, France, (6) CNRS, LAB, UMR 5804, F-33270, Floirac, France

Investigating Earth-like extrasolar planets with atmospheric models is a central focus in planetary science. Taking the development of Earth as a reference for Earth-like planets we investigate interactions between the atmosphere, planetary surface and organisms. The Great Oxidation Event (GOE) is related to feedbacks between these three. Its origin and controlling mechanisms are not well defined - requiring interdisciplinary, coupled models. We present results from our newly-developed Coupled Atmosphere Biogeochemistry (CAB) model which is unique in the literature. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles governing O$_2$ in early Earth’s atmosphere near the GOE. Complicated oxidation pathways play a key role in destroying O$_2$ whereas in the upper atmosphere, most O$_2$ is formed abiotically via CO$_2$ photolysis.