Uptake of CO₂ and precipitation of CaCO₃ in alkaline solutions -
Mechanisms and Rates

B. Purgstaller (1), A. Niedermayr (2), T. Rinder (1), and M. Dietzel (1)
(1) Graz University of Technology, Institute of Applied Geosciences, Graz, Austria (martin.dietzel@tugraz.at), (2) Ruhr University, Institute of Geology, Mineralogy and Geophysics, Bochum, Germany

The uptake of CO₂ in calcium ion bearing alkaline solutions and the subsequent precipitation of calcium carbonate is valid for many natural and man-made environments, e.g. causing the formation of travertine and drainage sinter, respectively (Clark et al., 1992; Dietzel et al., 1991). More recently such a CO₂ uptake is debated as an option for CO₂ sequestration by using alkaline residue materials, which contain e.g. CaO, in aqueous suspensions (Back et al., 2011). However significant gaps of knowledge exist with respect to combined CO₂ absorption uptake and CaCO₃ formation behavior in alkaline solution.

In the present study CO₂ uptake and CaCO₃ precipitation mechanisms and rates were experimentally studied by diffusion of CO₂ through a polyethylene membrane (0.2 mm thickness) from an inner to an outer solution containing carbonic acid (pH = 7.5) and CaCl₂ (10 mM), respectively (25°C). The pH of the outer solution was kept constant during two analogous sets of experiments at 8.3, 9.0, 10.0, 11.0, and 11.5 by adding 0.5 M NaOH solution. At a critical Ion Activity Product (IAP) CaCO₃ is formed in the outer solution. The NaOH titration curve and measured Ca²⁺ concentrations reflect CO₂ uptake rate and the precipitation rate of CaCO₃. By using automated pH stat. technique it is possible to detect CaCO₃ nucleation at a resolution down to ≈ 1 s of Ca²⁺ bound in CaCO₃ for a pH between 8.3 and 10.

XRD and (micro)Raman pattern as well as SEM imaging clearly reveal the formation of calcite and vaterite at pH 8.3 and 9, whereas at pH 10, 11, and 11.5 calcite, aragonite and vaterite are formed. The experimental results show that at elevated pH of the outer solution the uptake rate of CO₂ (equal to carbonate accumulation rate: CAR) is significant higher and less time for nucleation and ongoing formation of CaCO₃, tₚ, is required compared to lower pH conditions (e.g. pH 8.3 and 10 result in CAR = 3.9 10⁻⁵ and 5.1 10⁻⁵ mM s⁻¹ and tₚ = 7.9 and 1.1 h, respectively). Surprisingly at the given total experimental time of ≈ 20 h the amount of precipitated CaCO₃ was similar for all 10 experiments. This can be explained by significantly higher CaCO₃ precipitation rates (R) at low versus high pH (e.g. pH 8.3 and 10 result in R = 1.3 10⁻⁷ and 4.2 10⁻⁸ mM s⁻¹, respectively) if once a critical IAP is reached (e.g. IAP ≈ 10⁻⁷.4 and 10⁻⁶.8 at pH 8.3 and 10.0, respectively). Subsequent to this first precipitation step (duration of about 2 to 3 hours), the CaCO₃ precipitation rate is lowered down to a nearly constant precipitation rate for all experiments. The obtained relationships are discussed in the scope of using alkaline residue materials for CO₂ sequestration.

References