FT-ICR studies of anionic reactions for the chemistry of Titan ionosphere

C. Romanzin (1), E. Louarn (1), J. Lemaire (1), Jan Žabka (2), M. Polášek (2), J.-C. Guillemin (3), and C. Alcaraz (1)
(1) Lab. de Chimie Physique, UMR 8000 CNRS – Univ. Paris-Sud 11, Orsay, France, (2) J. Heyrovsky Institute of Physical Chemistry of the ASCR, v. v. i., Prague, Czech Republic, (3) Ecole Nationale Supérieure de Chimie de Rennes, UMR 6226 CNRS – Univ. de Rennes 1, Rennes, France

1. Introduction

Titan, Saturn’s largest moon, exhibits a dense atmosphere characterized by a thick orange haze and mainly composed of molecular nitrogen and methane as well as numerous other organic compounds such as nitriles. The chemistry taking place in its atmosphere is complex and still not completely understood. Yet, results from the Cassini-Huygens mission have shown that ionospheric chemistry must play a more important role than previously thought. The discovery of CN-, C3N- and C5N- together with a large amount of heavy cations and anions in the upper atmosphere [1-3] came indeed as a surprise and suggests that they could contribute to the formation of aerosols particles through an interplay between neutral and charged particles [4,5].

In this context, we have undertaken experimental investigations of ion-molecule reactions involving small anions such as CN-, C3N- and C5N- in a common effort between several French and Czech groups [5-8].

In the 2011 EPSC meeting, we have presented the study of the CN- + HC3N reaction in a tandem mass spectrometer as a function of the HC3N target pressure in order to explore different collisional conditions. The primary and secondary reactions with HC3N are found to be extremely efficient, resulting in anionic products of rapidly growing size. A detailed mechanism for the growth of these species has been proposed and its relevance to the growth of heavy anions in Titan’s ionosphere discussed [5].

Our objective is now to precisely characterize each step of this mechanism by studying the reactions in the single collision regime and by measuring rate constant and absolute reaction cross section as a function of temperature and collision energy.

2. Experiment

In this contribution, we will present a FT-ICR study at 300 K [8] done at Orsay with the MICRA setup [9] of the following reactions:

\[
\begin{align*}
\text{CN}^- & \quad + \quad \text{HC}_3\text{N} \\
\text{C}_3\text{N}^- & \quad + \quad \text{HC}_3\text{N} \\
\text{C}_5\text{N}^- & \quad + \quad \text{HC}_{15}\text{N} \\
\text{C}_{15}\text{N}^- & \quad + \quad \text{HC}_3\text{N}
\end{align*}
\]

CN- and C5N- parent ions have been produced by dissociative electron attachment on BrCN and BrC3N respectively. After ejection of the electrons, pulses of increasing length of cyanoacetylene (HC3N) target gas are injected to probe the kinetics of the reactions and derive their rate constant at 300 K.
3. Results

Several mechanisms, including fast proton transfer and slower associative detachment have been identified, as illustrated in Figure 2, and will be discussed at the conference [8].

![Figure 2: Kinetics of the CN + HC$_3$N reaction. Top: Mass spectrum. Bottom: variation of CN$^-$ and C$_3$N^{15}N product anions vs the HC$_3$N target pressure for a fixed reaction time of T= 2s. The fast decrease of CN$^-$ and rise of C$_3$N^{15}N is associated with the proton transfer and the decrease of C$_3$N^{15}N to the slower associative detachment.](image)

These results are complementary to the ones obtained by the french group of S. Le Picard at the University of Rennes 1 who have measured the rate constant of the CN$^-$ + HC$_3$N reaction as a function of temperature from 300 K down to 49 K [6,7] with the help of the CRESU technique [7].

Further studies are planned on the CERISES setup [10] at Orsay to characterize the reaction mechanism by measuring the absolute reaction cross section and product velocity distributions as a function of collision energy.

Acknowledgements

French Programme National de Planétologie (PNP), COST (Action CM0805 « The Chemical Cosmos »), France-Czech Republic Program CNRS-AVCR (n°20201), Czech Science Foundation (P208/11/0446), (Grant Nos. OC10046).

References

